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We demonstrate electromagnetically induced anomalous quantum dynamics of an exciton in a photonic band
gap �PBG�-quantum well �QW� heterostructure. Within the engineered electromagnetic vacuum of the PBG
material, the exciton can propagate through the QW by the emission and reabsorption of virtual photons in
addition to the conventional electronic hopping mechanism. When the exciton wave vector and recombination
energy nearly coincide with a photonic band edge, the exciton kinetic energy is lowered by 1–10 meV through
coherent radiative hopping. This capture of the exciton by the photonic band edge is accompanied by strong
electromagnetic dressing in which exciton’s renormalized effective mass is 4–5 orders of magnitude smaller
than in the absence of the PBG environment. This dressed exciton exhibits a long radiative lifetime charac-
teristic of a photon-atom bound state and is robust to phonon-assisted recombinative decay. By inheriting
properties of the PBG electromagnetic vacuum, the bound electron-hole pair becomes a stable, ultramobile
quantum excitation.
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I. INTRODUCTION

Photonic band gap �PBG� materials1,2 are artificial peri-
odic dielectrics in which light over a certain frequency range
cannot propagate. In the presence of engineered defects �de-
viations from periodicity� or random disorder, PBG materials
exhibit the striking phenomenon of light localization.3 An-
other fundamental property of PBG materials is the fre-
quency selective control of atomic spontaneous emission
through engineering of the electromagnetic vacuum.4–7 In the
case of stationary two-level atoms or quantum dots embed-
ded in three-dimensional �3D� PBG materials, a variety of
novel effects in quantum electrodynamics are predicted.
Among these is the emergence of coherent dipole-dipole in-
teraction between nearby resonant atoms.8–10 This becomes
the dominant radiative process when single-photon spontane-
ous emission is suppressed2,11 by the PBG. While previous
studies of quantum electrodynamics have focused on station-
ary light emitters, semiconductor structures may host mobile
excitations consisting of bound electrons and holes. Excitons
in bulk solids12 and semiconductor quantum well �QW�
structures13,14 have a long and rich history. Emission and
absorption of light by excitons are governed not only by
energy conservation but also by momentum conservation.
The interplay between exciton motion and radiative dynam-
ics leads to unexpected consequences in the engineered elec-
tromagnetic vacuum of a PBG material.

In the past decade, there have been important investiga-
tions of Bose-Einstein statistics of excitons in semiconductor
microcavities. In this context, the microcavity typically con-
sists of a QW �or multiple QWs� sandwiched above and be-
low by dielectric mirror stacks. Experimental studies of ex-
citon and cavity photon interaction have shown striking
effects of Bose quantum statistics such as stimulated scatter-
ing and amplification.15–18 However, due to the one-
dimensional �1D� nature of the mirror stacks and the low
dielectric contrast between mirror layers, only a small stop
gap along one direction is available for the confinement of
light. This cavity photonic mode is a leaky mode that couples

to the electromagnetic continuum of modes in the external
vacuum. Unless the cavity quality factor is extremely high,
the limited confinement of light by this effective 1D PBG
material enhances the photon emission rate in the direction
normal to the QW, thereby decreasing the exciton lifetime
for radiative recombination. The exciton lifetime can be pro-
longed by use of a double quantum well layer in which the
electron and hole wave functions are separated. However,
this leads to weaker coupling of the exciton dipole to elec-
tromagnetic modes. In addition, a membrane containing a
thin QW layer and patterned with air holes in a 2D photonic
crystal slab �PCS� has recently been studied by Andreani et
al.19 The guided mode in PCS is not strongly confined, and
there is no full 3D band gap to inhibit the single-photon
spontaneous emission of an exciton. In contrast, the PBG
environment in our proposed heterostructure provides the
possibility of simultaneous strong coupling between exciton
and photon as well as long exciton lifetime.

In this paper, we consider the detailed interplay between
exciton charge carrier dynamics and strongly confined pho-
tons in the engineered electromagnetic vacuum of a 3D PBG
heterostructure. This heterostructure consists of a thin single
layer quantum well sandwiched above and below by 3D
PBG materials. The QW acts as a planar defect that induces
guided optical modes within the otherwise forbidden 3D
PBG. When the electron-hole recombination energy lies
within the PBG, the exciton cannot decay without recourse
to additional mechanisms involving phonons, impurities, or
other recombination centers. Instead, the exciton forms a
bound state with the photon it would normally emit. Unlike
the stationary photon-atom bound state,4,5 the bound exciton-
photon can propagate through the quantum well at a fixed
in-plane wave vector. If the exciton recombination energy
and in-plane wave vector nearly coincide with a photonic
band edge, strong-coupling effects provide up to a 10 meV
reduction in the exciton energy. This leads to exciton dynam-
ics and facilitates quantum coherent behavior of excitons at
up to 100 K in the engineered electromagnetic vacuum.

In our 3D PBG heterostructure containing a QW defect
layer, planar guided optical modes appear within the photo-
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nic band gap. By careful choice of structural parameters, it is
possible to confine the 2D guided modes within a spectral
range that occupies only part of the original 3D PBG. By
choosing the photonic crystal lattice constant appropriately,
we can place the exciton radiative recombination energy near
resonance with either �i� the two-dimensional �2D� band
edge of the planar guided modes within the 3D PBG, �ii� the
upper 3D band edge of the bulk photonic crystal �in which
the exciton energy may also coincide with one of the 2D
guided modes�, or �iii� the lower 3D band edge of the bulk
photonic crystal.

When the exciton interacts nearly in resonance with any
of the above electromagnetic modes, mutual exchange of en-
ergy between charge carriers and photon leads to a normal
mode splitting analogous to vacuum Rabi splitting in a sta-
tionary atom.4–6 If the exciton interacts strongly with the 3D
upper band edge, it can lower its kinetic energy considerably
through the coherent process of recombinative decay at one
position, emission of a nonresonant virtual photon outside
the 3D PBG, and re-excitation at another position through
reabsorption of the virtual photon. This process is analogous
to coherent resonance dipole-dipole interaction �RDDI� be-
tween a pair of nearby impurity atoms.20 RDDI in PBG ma-
terials has been shown to provide unusual cooperative be-
havior among two-level atoms.8,9 In the context of a mobile,
electron-hole bound state, this coherent radiative hopping
provides an alternative mechanism for exciton transport that,
for certain energies and wave vectors, dominates traditional
electronic hopping. Through this electromagnetic hopping
and normal mode splitting, the exciton inherits certain fea-
tures of the photonic bands. In particular, the exciton energy-
momentum relation is fundamentally changed in the vicinity
of the photonic band-edge wave vector. The exciton and pho-
ton system exhibits a qualitatively different ground state with
a lowered energy and reduced effective mass at the photonic
band edge. In the presence of small thermal fluctuations or
scattering processes, an exciton of any initial wave vector is
captured in this dressed state by the corresponding photonic
band edge. Unlike conventional exciton-polariton states
based on coupling to a 1D optical cavity, long lifetime and
strong coupling emerge simultaneously and robustly in the
3D PBG heterostructure.

This paper is organized as follows. In Sec. II, we give a
general description of the photonic band gap heterostructure
containing a quantum well. We then present a simplified
model of the photonic modes including planar guided modes,
extended 3D modes, and the QW exciton Hamiltonian. In
Sec. III, we describe a general interaction Hamiltonian for
the QW exciton and the structured electromagnetic reservoir.
By applying a canonical transformation to this interaction
Hamiltonian, we provide a simple physical picture of the
exciton radiative hopping mechanism. We then present de-
tailed results for the three different exciton-photonic band-
edge interactions listed above. In Sec. V, we briefly discuss
the robustness of the renormalized exciton to decay mediated
by longitudinal optical �LO� phonons. We also discuss the
robustness of exciton capture by the photonic band edge to
static disorder. A microscopic derivation of the interaction
Hamiltonian for the QW exciton with electromagnetic modes
of the photonic band gap heterostructure is given in the Ap-
pendix.

II. MODEL OF EXCITONS AND PHOTONS IN A PBG
QUANTUM WELL

For concreteness, we consider a single layer of QW sand-
wiched by 3D PBG materials made from either a square
spiral21 or a woodpile22 architecture. Both heterostructures
exhibit similar optical characteristics. The background PBG
material is assumed to have dielectric constant of silicon ��
=11.9� and may consist of polycrystalline23–25 or
crystalline26,27 semiconductor. On the other hand, the thin
quantum well layer is assumed to be a high quality crystal-
line semiconductor made from well-studied III-V com-
pounds, such as GaAs or InGaAsP. Such a quantum well
heterostructure has recently been fabricated by Noda et al.28

Here, a flat light-emitting layer composed of three InGaAsP
multiple quantum wells with emission wavelength around
1.5 �m was inserted in the middle of the GaAs 3D woodpile
structure with one unit cell above and below. A heterostruc-
ture of this type could be adapted for the study of anomalous
exciton dynamics proposed in this paper. This requires in-
creasing the number of layers of PBG material above and
below to inhibit the exciton radiative decay and engineering
the lattice constant to set the exciton recombination energy in
resonance with a specific photonic band edge. Figures 1�a�
and 1�b� illustrate a QW layer sandwiched between a pair of
woodpile25,29,30 PBG materials and its corresponding band
structure for our proposed heterostructure. The QW can also
be grown in silicon-based structures by introducing a buffer
region between QW and the PBG cladding regions. The di-
electric constants of common QW layers are on the order of
10 and the exciton recombination energy is on the order of
1 eV. We assume that exciton recombination energy and the
PBG are in the transparency region of the underlying semi-
conductor materials. Our proposed geometry for QW inser-
tion consists of separating the two halves of a bulk PBG
material by the thickness of the QW and then placing the
solid semiconductor crystal layer in the resulting air gap. For
the purpose of specific illustration and potential linkage to
optical communication application, we consider QW with
dielectric constant of 11.9 with an exciton whose recombina-
tion energy corresponds to a photon of wavelength of
1.5 �m.

A. Band structure of QW-PBG heterostructure

We begin by evaluating the electromagnetic mode struc-
ture for the PBG-QW heterostructure. Plane wave expansion
�PWE� method is used to calculate the band structure in a
supercell consisting of four unit cells of square spiral PBG
material above and below the QW �see Fig. 2�a��. Figure 2�b�
shows the photonic band structure for a QW thickness of 6%
of the lattice constant of the 3D photonic crystal. For a 3D
PBG centered at 1.5 �m, the actual lattice constant a
=550 nm for direct square spiral 1.31 The QW thickness in
this case is slightly less than 33 nm. The square spiral struc-
tural parameters are given in the caption of the Fig. 2�b�.
Two gray regions represent the original Bloch photonic
modes of the bulk 3D PBG material without any defect. Two
planar guided band solid lines �red online� remain within the
PBG as the supercell size is increased. If the QW thickness is
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increased, more planar guided modes enter the original 3D
PBG. At a critical QW thickness of 0.1a, the entire 3D PBG
is filled with 2D guided modes. For the purpose of illustrat-
ing various exciton-photonic band-edge interactions, we
limit the QW thickness so that a complete 3D PBG remains
open in the vicinity of the planar defect. For 2D guided
modes, the electromagnetic field is exponentially localized in
the z direction and confined near the QW. Light in these
modes can propagate only along the QW plane. Other modes
merge into the continuum �gray region� as the supercell size
is increased. We interpret these as bulk 3D bands for an
infinite crystal containing a single QW layer. This type of
electromagnetic mode structure is a generic feature of the
PBG-QW heterostructures.

An alternative approach to planar exciton confinement
within a 3D PBG material �fabricated from single-crystal

semiconductor� consists of retaining the bulk photonic crys-
tal geometry throughout. This alternative architecture in-
volves introducing a compositional change in the backbone
semiconductor contained within a thin planar region. In this
case, the QW would not consist of a solid plane of material
but would contain a periodic array of solid-to-air interfaces
wherever the QW plane cuts the 3D PBG backbone. This
architecture maintains the large 3D PBG of the cladding re-
gions throughout the heterostructure. Such structures have
also been fabricated recently.28,32 Here, a light-emitting layer
containing a high quality thin �50 nm� layer of multiple
quantum well �MQW� made from III-V semiconductor ma-
terial �InGaAsP/InP� within woodpile structure �GaAs� in
the range of 1.55 �m was fabricated. The light-emitting
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FIG. 1. �Color online� �a� PBG-QW �quantum well� heterostruc-
ture, consisting of a QW layer sandwiched by woodpile structure.
The 3D woodpile structure is cut into two halves at the interface
between two orthogonal dielectric rod layers, the halves are sepa-
rated, and the QW inserted. The dielectric rods have a rectangular
cross section with width 0.25a and height 0.3a, where a is the
center to center distance between adjacent rods in the same layer.
One unit cell of the woodpile consists of four stacking layers. Ac-
cordingly, the periodicity is 1.2a along the stacking direction. �b�
The corresponding photonic band structure calculated by supercell
plane wave expansion �PWE� method. The supercell consists of a
defect of thickness 0.06a sandwiched by four unit cells of woodpile
structure above and four unit cells of woodpile structure below.
Shaded regions show allowed bands in the 3D woodpile cladding
region. Solid �red� curves in upper white region �PBG� are planar
guided modes induced by QW defect. Labeled are the planar band
edge �1�, the upper 3D band edge �2�, and the lower 3D band edge
�3�.
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FIG. 2. �Color online� �a� PBG-QW �quantum well� heterostruc-
ture consisting of a QW layer sandwiched by the direct square spiral
structure �DSS� �Refs. 21 and 31�. The original 3D PBG material is
cut into two halves at the bottom of one unit cell, the halves are
separated, and the QW inserted. The unit cell of PBG material is a
DSS:1 structure �Ref. 31� consisting of the interleaving, square spi-
ral arms with a transverse arm length of 0.7a, vertical period of
1.35a, and circular cross section of 0.2a, where a is the lattice
constant. The square spiral arms wind in phase with each other and
are arrayed on a 2D square lattice. �b� The corresponding photonic
band structure calculated by supercell plane wave expansion �PWE�
method. The supercell consists of a defect of thickness of 0.06a
sandwiched by four unit cells of PBG material above and four unit
cell of PBG material below. Shaded regions show allowed bands of
the 3D PBG cladding regions. Solid �red� curves in upper white
region �PBG� correspond to planar guided modes induced by QW
defect. Labeled are the planar guided band edge �1�, the upper 3D
band edge �2�, and the lower 3D band edge �3�.
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layer is simply a planar compositional change within the
woodpile structure. However, the large number of dielectric
surfaces may provide unwanted exciton recombination cen-
ters.

In order to prevent exciton recombination at dielectric to
air interfaces, it may also be suitable to embed a layer of
quantum dots into a 3D PBG material rather than using pe-
riodically pierced QW layers. In this case, the bare exciton is
confined to the quantum dots and is immobile. However, the
dressed exciton may still acquire a high mobility through
radiative processes in which it is transported from one quan-
tum dot to another by emission and reabsorption of virtual
photons. This is analogous to resonance dipole-dipole inter-
action between stationary atoms in a PBG material.4,5

In this paper, we limit our study to a solid QW sand-
wiched by separated halves of semi-infinite PBG material
attached on either side. The resulting electromagnetic modes
can be inferred from a supercell PWE calculation and exam-
ining the field patterns. We focus on exciton-photon strong-
coupling regions related to three band edges, indicated by
numbers in Figs. 1�b� and 2�b�. In order to first illustrate the
physics with analytical results, we adopt a simple effective-
mass approximation for the photonic dispersion around these
band edges, valid when the exciton recombination energy
occurs close to the band edge. It is straightforward to treat
realistic photonic dispersion relations for all k� vectors. This
is done subsequently by numerical calculation.

The photonic dispersion near each band edge is param-
etrized in the effective-mass approximation as

�q� ,kz

�i� = �i +
ac

2�
�Ax

�i��qx − qx
�i��2 + Ay

�i��qy − qy
�i��2 + Az

�i��kz

− ki�2�, i = 1,2,3. �1�

Here, �i is the band-edge frequency of the ith band �i=1,
planar guided mode; i=2, upper 3D band-edge mode; and i
=3, lower 3D band-edge mode� and �qx

i ,qy
i ,ki� is the wave

vector position of band edge �i. a is the 3D photonic crystal
lattice constant and c is the speed of light in vacuum. Ax

�i� and
Ax

�i� are dimensionless 2D effective-mass parameters along
the x and y directions, respectively, extracted from realistic
photonic band structure calculation. Similarly, Az

�i� is a di-
mensionless effective-mass parameter describing photonic
dispersion in the z direction �normal to QW� as obtained by
PWE method. For the upper 3D band edges shown in Figs.
1�b� and 2�b�, Az

�2��0, whereas the lower 3D band edge
exhibits negative effective mass, Az

�3��0. Since the planar
guided photon has dispersion only along the QW plane, it
follows that Az

�1�=0.
The electric field amplitude of a general Bloch mode pho-

ton at wave vector �q� ��qx ,qy� ,kz� can be written as

E� q� ,kz
�r�� = u��	� ,z�ei�q� ·	�+kzz� = �

n

u�G�
n�	� ,z�ei��q�+G�

n�·	�+kzz�, �2�

where r���	� ,z�, 	� is the in-plane coordinate vector, and �G�
n	

are the 2D reciprocal wave vectors. The function u�G�
n is de-

fined below for different spectral ranges.

In the case of a planar guided mode �i=1�, u��	� ,z� is a
function confined in the z direction around the QW plane and
periodic along the QW plane with kz=0. For 3D extended
Bloch modes �i=2,3�, u��	� ,z� is a periodic function in the
coordinate 	, but also extended in the z direction. The wave
function in each case is normalized in the supercell. In order
to verify the accuracy of the electric field pattern in the QW
obtained by supercell PWE, we use the finite difference time
domain �FDTD� method with a resolution of 50 points per
lattice constant a in each directions. At this resolution, a
planar dielectric defect with thickness of 0.06a can be rep-
resented by three layers of FDTD mesh points. In our super-
cell, we insert the planar dielectric defect material precisely
in the middle with four unit cells of periodic PBG material
on either side. The QW is situated in the middle of this
planar dielectric defect. This means that the confined exciton
feels the electric field generated in the second layer of the
FDTD mesh points in the defect.

The task of obtaining highly accurate field patterns for the
unconfined 3D band-edge modes in the QW layer calculated
from supercell is more challenging. These modes are not
localized in the z direction and they evolve slowly to the bulk
photonic crystal band edges as the supercell size increases.
Indeed, the field distribution in the QW for these modes may
be influenced by sample boundary conditions many unit cells
away from the QW itself. Rather than treating this variability
with specific sample boundary conditions, we adopt a simple
modification of the bulk 3D band-edge modes for the infinite
periodic 3D crystal �without QW� as a typical field pattern
for the actual sample containing the QW. More specifically,
we use a suitably screened �by the dielectric constant of the
QW� version of the Bloch field pattern of the bulk 3D band-
edge modes as our model field pattern in evaluating exciton-
photon interaction in the QW.

From our calculation of the planar guided band field pat-
terns using high resolution FDTD, we find that the QW layer
screens the normal component of an applied electric field by
acquiring surface polarization charges. This is consistent
with the field boundary condition in which the displacement
field is continuous along the normal direction and the electric
field is continuous along the tangential direction. In adapting
the 3D band-edge modes to the QW layer, we assume that
the only major modification of these modes to the QW archi-
tecture is a simple dielectric screening effect on the z com-
ponent of the electric field. Due to the large dielectric con-
stant of the quantum well layer, the dominant contributions
to the exciton-photon interaction come from larger, un-
screened, in-plane electric field components of the Bloch
mode.

B. Quantum well exciton model

In the electronic, two-band �conduction and valence
bands� effective-mass approximation, the QW exciton wave
function, polarized in the j direction, in its lowest bound
state, with an in-plane wave vector q� , is described by the
wave function33



 j,q�� = Bj,q�
† 
0� = �

k�
Ak�,q�aq�/2+k�

† bq�/2−k�
† 
0� , �3a�
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Ak�,q� =� d	���	�
e−i�k�+�mh

*−me
*�/�mh

*+me
*��q�/2��·	�

S
, �3b�

��	� = � 8

�aB
2 �1/2

exp�−
2	

aB
� . �3c�

Here, me
* and mh

* are the effective masses of electron and
hole, respectively. a† and b† are the creation operators for the
electron and hole, respectively. Bj,q�

† is the creation operator
for the exciton, where j is the exciton polarization index �to
be explained below�, q� is the total center-of-mass, in-plane
momentum of the exciton, and 	� is the in-plane displacement
vector between the electron and hole. Ak�,q� is the Fourier
transform of the electron-hole relative motion wave function
��	�, which is assumed to take a form of a 1s state �2D
hydrogenic orbital� describing the ground state of the bound
exciton. aB is the Bohr radius of a hydrogenic 3D exciton.
For a pure 2D exciton, the actual radius is reduced to aB /2.
Assuming an infinite barrier potential at the upper and lower
surfaces of the thin QW layer, the single particle state created
by a† or b† can be written in the envelope function approxi-
mation as

��c,v�,k�,m�	��,z� =
exp�ik� · 	���

S
f �c,v�,m�z�u�c,v��	��,z� , �4a�

f �c,v�,m�z� = � 2

lw
�1/2

sin�m�z

lw
� . �4b�

Here, S and lw are the QW area and thickness, and 	�� and
z are the in-plane displacement vector and the normal dis-
placement coordinate of the electron �or the hole�, respec-
tively. u�c,v��	�� ,z� is the electronic Bloch function taken at
the  point in the electronic Brillouin zone of the conduction
band or valence band. f �c,v�,m�z� are envelope functions of the
electron or the hole in the z direction normal to the QW. In
the following, we set m=1 in Eq. �4b� to obtain the lowest
energy exciton manifold and drop the index m in subsequent
discussions.

The exciton exhibits a polarization degree of freedom re-
sulting from the different symmetries �within the electronic
unit cell� of the microscopic electronic Bloch functions,
u�c,v��	�� ,z� shown in Eq. �4a�. In the detailed derivation of
the exciton-photon interaction Hamiltonian given by Eq.
�A14a� in the Appendix, the optical dipole transition matrix

element, d� = �uc�r��
er�
uv�r���, that creates the exciton can
fall along one of the three independent directions. The orien-
tation of the dipole is determined by the symmetry of the
underlying atomic orbitals that constitute the electronic
Bloch functions. For example, an optical transition from a
valence band state with a large s component �zero orbital
angular momentum� to a conduction band state with large pi
component, i=x ,y ,z �angular momentum ��, provides exci-
tonic polarization in the x, y, and z directions, respectively.
This leads to three distinct types of excitons labeled as T, L,
and Z excitons, respectively �see the Appendix for precise
definition�. If the QW is placed in a featureless electromag-

netic vacuum �no PBG cladding material�, the T exciton
couples to free space TE modes �electric field vector is per-
pendicular to the “plane of incidence,” which contains the
input beam, the output beam, and the direction normal to the
sample surface�. The L exciton couples to free space TM
modes �magnetic field vector is perpendicular to the plane of
incidence�. The Hamiltonian for such a featureless electro-
magnetic vacuum separates for different exciton polariza-
tions. Since the actual photonic modes in the PBG-QW het-
erostructure have a mixed polarization structure, the T, L,
and Z excitons in this engineered vacuum are all coupled.
However, due to the screened electric field normal to the
planar defect, the photon–Z-exciton coupling is compara-
tively weak. We consider only the T and L excitons in what
follows. We make a further approximation in the case of an
exciton resonantly coupled to the planar guided mode. For
the planar guided band edge, our numerical results show that
the electric field is strongly polarized perpendicular to the
band-edge wave vector at which the exciton is captured. Ac-
cordingly, we only consider the T-exciton-planar guided
mode interaction. For the 3D band-edge modes, the planar
electric fields along the transverse and longitudinal directions
are comparable. Therefore, we consider both T and L exci-
tons in our exciton-3D band-edge interaction models.

III. EXCITON-PHOTON COUPLING IN A PHOTONIC
CRYSTAL

The construction of a model Hamiltonian for exciton-
photon coupling in a PBG environment is simplified by en-
ergy and momentum conservation considerations.12 In a QW
with continuous translational symmetry in the plane, mo-
mentum is conserved. This implies that an exciton with in-
plane wave vector q� cannot undergo purely �one-photon� ra-
diative decay unless it emits a photon with the same q� . In
general, this leads to the requirement for defects that act as
recombination centers for radiative decay to occur. When the
quantum well is sandwiched above and below by 3D PBG
material, this continuous translational symmetry is replaced
by the discrete translational symmetry imposed by coupling
to Bloch mode photons �see the Appendix�. This discrete
symmetry is characterized by the set of reciprocal lattice vec-
tors �G�

n	 for the 3D photonic crystal parallel to the QW
plane. This implies that an exciton of wave vector q� +G�

n can
also recombine to emit a photon of wave vector �q� ,kz� is in
the first Brillouin zone of the photonic crystal. The QW
breaks translational symmetry in the z direction. Conse-
quently, a photon with arbitrary z component kz can be emit-
ted provided that such a photon exists near the recombination
energy. A microscopic derivation of the exciton-photon cou-
pling, taking into account the properties described above, is
given in the Appendix. The resulting model Hamiltonian �un-
der rotating wave approximation� can be written as

H = Hexc + HEM + Hi, �5a�

Hexc = �
j,n

� j,q�+G�
nBj,q�+G�

n
† Bj,q�+G�

n, �5b�
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HEM = �
p,kz

��p,�q� ,kz�
cp,�q� ,kz�

† cp,�q� ,kz�
, �5c�

Hi = �
j,n,p,kz

i�gj,n,pBj,q�+G�
n

† cp,�q� ,kz�
+ H.c., �5d�

where

gj,n,p = −
� j,q�+G�

n

�2��p,�q� ,kz�
�0l

��0�djuj,n,p. �5e�

Here, Bj,q�
† �Bj,q�� creates �annihilates� an exciton with

the “bare” dispersion � j,q� �due to electronic hopping alone�.
The index j �� T, L, Z� denotes the exciton polarization, as
described in Sec. II B and the Appendix. cp,�q� ,kz�

† �cp,�q� ,kz�
�

creates �annihilates� a 3D Bloch mode photon in photonic
band p, with wave vector �q� ,kz� with frequency �p,�q� ,kz�

.
From Eq. �5e�, we see that the coupling gj,n,p of the
j-polarized exciton of wave vector q� +G�

n to photons in band
p is proportional to dj, the magnitude of the j-exciton dipole,
and uj,n,p, the Fourier component q� +G�

n of the electric field
in the j direction. To perform numerical calculation, we also
assume the following exciton parameters. ��0�=1.6
�108 m−1 is the overlap amplitude in the electron and hole
relative movement wave functions, assuming an exciton
Bohr radius aB=10 nm. dj =10−28 C m is the magnitude of
the all different polarized exciton dipole. The parameter l is
the sample �quantization� length along the z direction for
discretizing the electromagnetic modes. l is canceled out af-
ter performing integration over kz for the final exciton renor-
malization. �0 is the permittivity of free space. Since we
consider exciton nearly resonant with a photonic band edge
appearing at a certain wave vector position, we attribute the
field pattern at the band edge for the band p to the entire
band p in approximating the coupling parameters �uj,n,p	.
Variations of these couplings at far away, off-resonant wave
vectors make negligible change to the final dressed exciton
energies.

The model Hamiltonian �Eqs. �5�� of QW exciton in the
engineered PBG vacuum is parametrized by the quasimo-
mentum q� , which is a constant of motion for the exciton.
Consequently, the model �Eqs. �5�� represents �one of� a fam-
ily of Hamiltonians spanning the various conserved exciton
momenta. In what follows, we demonstrate that when the
exciton wave vector approaches one of the photonic band
edges, a dramatic renormalization of exciton properties takes
place.

Before proceeding to a detailed evaluation of exciton
dressing by photonic crystal modes, we consider a simplified
model to illustrate the coherent radiative hopping process
resulting from interaction with light. From photonic band
structure calculations, it is straightforward to verify that the
photon effective mass is typically 5 orders of magnitude
smaller than the exciton effective mass at the relevant pho-
tonic band edges. Therefore, it is instructive to first neglect
the exciton dispersion �set the bare exciton effective mass to
infinity� and replace � j,q�+G�

n by a wave vector independent
constant �b in Eqs. �5b� and �5e�. We simplify the model to

treat only one photonic band edge interacting with the exci-
ton �see also Sec. III B�, and we also neglect the photon
dispersion in the coupling constant near resonance. The sim-
plified Hamiltonian becomes

H = H0 + Hi, �6a�

H0 = �bDq�
†Dq� + �

kz

���q� ,kz�
cq� ,kz

† cq� ,kz
, �6b�

Hi = �
kz

i�g̃Dq�
†cq� ,kz

+ H.c. �6c�

We show in Sec. III A that the coupling constant g̃ and the
new form of exciton creation operator D† for this simplified
Hamiltonian can be related to those of the original Hamil-
tonian in Eqs. �5� by the relations

g̃ = �
j,n

gj,ngj,n
* , �6d�

Dq�
† = �

j,n

gj,n

g̃
Bj,q�+G�

n
† . �6e�

Given the discrete translational symmetry in the QW plane
and the broken translational symmetry normal to the QW
plane, the in-plane wave vector q is conserved and the out-
of-plane wave vector kz can be freely chosen in the first
Brillouin zone.

Substituting the coupling term �Eq. �5e�� into Eq. �6d�, we
obtain g̃=

�0

2��0l
��0�d��uj,nuj,n

* �1/2 on the condition of
exciton-photon resonance and neglecting exciton and photon
dispersion in coupling Eq. �5e� ���0=� j,q�+G�

n =���q� ,kz�
�.

To derive the renormalized exciton dispersion mediated
by coherent emission and reabsorption of virtual photons, we
use the canonical transformation method. A more general
variational wave function approach in obtaining the dressed
exciton is presented in subsequent sections. Using a unitary
transformation eS, the original Hamiltonian H is transformed
into the effective Hamiltonian H� that incorporates radiative
dressing into the exciton kinetic energy,

H� = e−SHeS = �
n=0

�
1

n!
�¯��H,S�,S� ¯ ,S�

= H + �H,S� +
1

2!
��H,S�,S� + ¯ , �7a�

where

S = − F�
kz

i�g̃�Dq�
†cq� ,kz

+ Dq�cq� ,kz

† � . �7b�

In Eq. �7b�, the undetermined parameter F is chosen to sat-
isfy Hi+ �H0 ,S�=0. This condition eliminates the linear
exciton-photon interaction in H�. This type of transformation
has been used in a different physical context, namely, for an
interacting many-electron system coupled to phonons. In
such a system, the linear electron-phonon coupling is elimi-
nated to obtain a phonon-mediated effective electron-
electron interaction relevant to the phenomena of Cooper
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pairing and superconductivity.34 In our exciton-photon model
�Eqs. �6��, the linear exciton-photon interaction is eliminated
by the choice F= ��b−���q� ,kz�

�−1. In order to extract the ef-
fective exciton hopping Hamiltonian Hef f from H�, we con-
sider all terms that are quadratic in the exciton operators and
contain no photon operators. These include H0 and terms
from �Hi ,S�. We obtain the renormalized exciton kinetic en-
ergy:

Hef f = ��b + �
kz

�2g̃2

�b − ��q� ,kz

�Dq�
†Dq� . �8�

The revised exciton energy given in brackets in Eq. �8� in-
corporates the effect of emitting and reabsorbing nonreso-
nant virtual photons of energy ���q� ,kz�

.
When the exciton energy is very near in resonance with

the photonic band edge, a more accurate expression for the
dressed state energy is required. In what follows, we show
that a more precise variational estimate for the exciton en-
ergy is obtained by replacing the term �b in the denominator
of �Eq. �8�� by the renormalized energy E itself. The modi-
fication is equivalent to the change from Rayleigh-
Schrödinger perturbation theory to Brillouin-Wigner pertur-
bation theory.35 As we show in Secs. III A and III B, the
exciton energy E is obtained by solving the implicit equation

E = �b + �
kz

�2g̃2

E − ��q� ,kz

. �9�

Substituting the corresponding dispersion of the photonic
band edge and performing the integral over kz, we will obtain
the renormalized exciton dispersion. Equipped with this gen-
eral understanding about the exciton in this engineered
vacuum, we proceed to a more detailed treatment of the spe-
cific interactions described by the original model Hamil-
tonian of Eqs. �5�.

A. Exciton interaction with planar guided band edge

Planar guided modes appearing in the PBG due to the QW
defect layer are evanescent in the normal direction but freely
propagate along the QW. Our numerical calculation reveals
that only the lowest planar guided mode is strongly polarized
both in plane and perpendicular to the band-edge wave vec-
tor q� . This band-edge mode couples strongly to the T exci-
ton. In the absence of nearby 3D extended modes, we can
eliminate the sum over kz in the general Hamiltonian shown
in Eqs. �5�. The reduced Hamiltonian for a T exciton coupled
to the lowest planar guided electromagnetic mode is

H = Hexc + HEM + Hi, �10a�

Hexc = �
n

�q�+G�
nBq�+G�

n
† Bq�+G�

n, �10b�

HEM = ��q�cq�
†cq� , �10c�

Hi = �
n

i�gnBq�+G�
n

† cq� + H.c., �10d�

gn = − �0

2��0
��	 = 0�duG�

n. �10e�

Here, �0 represents both the exciton recombination en-
ergy and the planar guided band-edge photon energy, since
they are nearly in resonance. We neglect the photon and ex-
citon dispersion in obtaining the coupling constants in Eq.
�10e�. All other notations are the same as in Eqs. �5�. The
reduced model �Eq. �10�� represents a continuous one-
parameter family of Hamiltonians for each choice of the con-
served wave-vector q� .

In the following, we provide a more precise variational
approach to obtain the dressed exciton dispersion without
recourse to the canonical transformation method described
above. From the interaction Hamiltonian �Eq. �10d��, we ob-
serve that the planar guided photon of wave vector q� only
couples to an exciton of wave vector q� +G�

n, where �G�
n	 is

the set of in-plane photonic crystal reciprocal lattice vectors.
The dressed exciton eigenstate must then be the linear super-
position of the corresponding exciton states and the planar
guided photon. This can be expressed using a variational
wave function in the Schrödinger picture:


q��dressed
exc = �

n

bG�
n
q� + G�

n�bare
exc + bphoton

2D 
q��photon, �11�

Here, 
q� +G�
n�bare

exc represents a single bare exciton of wave
vector q� +G�

n and zero photons. 
q��photon represent a single 2D
photon in the planar guided photonic mode and no exciton
present. bG�

n and bphoton
2D are variational amplitudes of bare

exciton eigenstates and the planar guided photon, respec-
tively. This variational ansatz for the dressed exciton at wave
vector q� , denoted by 
q��dressed

exc , considers only contributions
from the single exciton and single-photon sectors of the
many-electron, multiphoton Hilbert space. Within this sub-
space of the larger Hilbert space, the Schrödinger equation
for the dressed exciton becomes

�
�q�+G�

1 0 ¯ 0 i�g1

0 �q�+G�
2

¯ 0 i�g2

] ] � 0 ]

0 0 ¯
�q�+G�

n i�gn

− i�g1
* − i�g2

*
¯ − i�gn

* ��q�

��
bG�

1

bG�
2

]

bG�
n

bphoton
2D

�
= E�

bG�
1

bG�
2

]

bG�
n

bphoton
2D

� . �12�

Here, the energy eigenvalue E for the dressed exciton implic-
itly depends on the conserved crystal momentum parameter
q, and this defines the dressed exciton dispersion relation as
it is renormalized by the radiative �virtual photon� hopping
process. From Eq. �12�, it is straightforward to derive the
following eigenvalue condition:
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�
n

�2gngn
*

��q�+G�
n − E����q� − E�

= 1. �13�

After solving Eq. �13� for the eigenenergy E, it follows that
the variational amplitudes satisfy the condition

bG�
n = bphoton

2D �gn
*

�q�+G�
n − E

. �14�

bphoton
2D is, in turn, obtained by the normalization of the

dressed exciton eigenstate �Eq. �11��.
As in the illustration provided by the simplified model

Hamiltonian �Eq. �6��, it is instructive to consider the limit in
which bare exciton has an infinite effective mass. In this
case, the bare exciton is dispersionless and we may set
�q+G�

=�b, the wave vector independent electron-hole recom-
bination energy. As it turns out �for realistic exciton param-
eters�, the bare exciton dispersion makes relatively small
contribution �compared with coherent radiative hopping� to
the dressed exciton dispersion relation. In the exciton infinite
effective-mass approximation, Eq. �13� is reduced to

��b − E����q� − E� − �2g̃2 = 0, �15a�

where the effective coupling constant is defined as g̃
= ��ngngn

*�1/2. The resulting two dispersion branches are
given by

E =
�b + ��q� ± ��b − ��q��2 + 4�2g̃2

2
. �15b�

The energy difference between these two branches is the
excitonic equivalent of vacuum Rabi splitting.4–6 The origi-
nal interaction Hamiltonian �Eq. �10d�� can be rewritten us-
ing the infinite effective-mass coupling constant as

Hi = i�g̃Dq�
†cq� + H.c., �16�

where we have defined the modified exciton creation opera-
tor

Dq�
† = �

n

gn

g̃
Bq�+G�

n
† . �17�

If we now assume that �q+G�
=�b �infinite effective mass�, the

Hamiltonian �Eq. �10�� reduces to

H̃ = �bDq�
†Dq� + ��q�cq�

†cq� + i�g̃�Dq�
†cq� − cq�

†Dq�� . �18�

Diagonalizing H̃ reproduces the eigenvalue solutions �Eq.
�15b��.

If we include the bare exciton dispersion in the evaluation
of the dressed state energies, we must truncate the matrix
Schrödinger equation �Eq. �12�� at a certain G�

n and solve it
numerically. In this case, we consider only the T exciton in
our model Hamiltonian. To obtain the coupling coefficient,
we require the transverse part of the Fourier component
u��	� ,z0� of the electric field in Eq. �2�, where z0 is the posi-
tion of QW in the PBG-QW heterostructure. This leads to a

numerically tractable matrix equation since the main contri-
bution of the electromagnetic field comes from lower orders
of G�

n.
For concreteness, we consider a heterostructure consisting

of a QW sandwiched by woodpile27 PBG material �see Figs.
1�a� and 1�b��. The woodpile structure consists of rod stacks
with rectangular cross section. The width and height of the
rods are 0.25a and 0.3a, respectively, where a is the lattice
constant �the distance between two adjacent rods in the same
layer�. One unit cell of woodpile consists of four stacking
layers. Therefore, the vertical periodicity in the stacking di-
rection is 1.2a. The QW thickness is chosen to be 0.06a.
Using a dielectric constant of 11.9 for both the PBG material
and the QW, the lowest 2D planar guided band edge �red line
in Fig. 1�b�� appears at frequency of 0.4002�c

a . We assume
that the exciton binding energy is 0.8266 eV, corresponding
to a recombinative radiative emission at wavelength of
1.5 �m. If the exciton is in resonance with the 2D photonic
band edge, the lattice constant is 600 nm. Recently, Noda et
al.28 have fabricated a flat light-emitting layer composed of
three InGaAsP multiple quantum wells with emission wave-
length around 1.5 �m sandwiched above and below by one
unit cell of the GaAs 3D woodpile structure. In our design,
we sandwich the MQW by more unit cells of woodpile struc-
ture and extend this thin light-emitting layer over a larger
area so that the exciton wave vector is a good quantum num-
ber. Nevertheless, the experimentally fabricated
architecture28,32 clearly points to the materials suitable for
our design and indicates the feasibility of our PBG-QW het-
erostructure.

From the eigenvalue equation �Eq. �13��, we can see that
anisotropic photonic dispersion leads to anisotropic renor-
malized exciton dispersion. After diagonalizing the matrix
�Eq. �12�� in the case of dispersionless exciton, we obtain
two new eigenstates that we refer to as the upper and lower
exciton-polaritons. Using the numerically calculated planar
guided mode by FDTD together with the assumption of ex-
citon Bohr radius aB=10 nm ���0�=1.59�108 m−1�, exci-
ton recombination energy of 0.8266 eV, and dipole moment
d=10−28 C m, we obtain the effective coupling �g̃
=8.2 meV and then the normal mode splitting of about
16 meV. A similar description has been used36 for coupled
exciton-photon mode splitting in a semiconductor microcav-
ity. Here, we stress some major differences between the con-
ventional cavity exciton-polariton and our exciton-photon
bound state. In Ref. 36, the cavity photon mode distributes
uniformly on the QW plane and the dressed exciton ground
state is centered at the  point �wavevector is �0, 0��. In order
to reduce coupling to the continuum of photon states at the
interface with air, a large stack ��57� of quarter-wave semi-
conductor layers36 is required. The exciton can nevertheless
decay by coupling to photons �propagating off normal to the
Bragg stack� that are outside the 1D stop gap of the cavity
mirrors. Our PBG photons reside in fundamentally “guided”
modes �centered at high symmetry wave vector points�,
which are decoupled from the photon continuum states at the
sample boundaries above and below the QW. There is no
decay of the exciton due to coupling to nonguided modes.
The exciton-planar guided photon splitting in our paper is
analogous to the idealized exciton-polariton in 3D bulk semi-
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conductor described by Hopfield.12 Here the exciton and
photon both have well-defined energy and wave vector. Irre-
versible exciton decay occurs only through scattering of po-
laritons by other material excitations such as phonons. In
practice, photon confinement by Bragg mirrors36 is weak,
and it is necessary to increase the number of QWs to effec-
tively increase the exciton-photon coupling in order to ob-
serve this coupled exciton-photon mode splitting. Our 3D
PBG architecture provides much stronger confinement of the
cavity photon leading to strong interaction with exciton. Our
numerical results show that the mode splitting is in the range
10–16 meV �double the energy depth of the local dispersion
minimum� for a single QW in the PBG material.

We now focus on the lower exciton-polariton which de-
termines the ground state of the dressed exciton in our 3D
PBG architecture. Firstly, comparing the band structure cal-
culation shown in Fig. 1�b� and the planar guided photon
dispersion model �i=1� in Eq. �1�, we obtain �Ax

�1� ,Ay
�1��

= �0.52,0.8� and �qx ,qy�= �0.5,0� 2�
a , and then substituting

these parameters together with others described, we obtain
the following numerical figures. Figure 3 shows the disper-
sion of the dressed exciton along the x axis for a dispersion-
less bare exciton resonantly interacting with the 2D planar
guided band-edge photons. Remarkably, this photon interac-
tion creates a deep local minimum in the dressed exciton
dispersion relation near the 2D photonic band-edge wave
vector. The dressed exciton lowers its energy considerably
through coherent radiative hopping by emission and reab-
sorption of band-edge photons. The relative insensitivity of
the renormalized exciton ground state energy to the bare ex-
citon effective mass is shown in Fig. 4. For a broad range
�shown on a logarithmic scale� of bare exciton effective
masses �electronic dispersion�, the depth of the exciton-
polariton dispersion remains over 8 meV. For a bare exciton
effective mass of 1me, the renormalized dispersion depth is
almost the same as for an infinite effective-mass exciton in-

teracting with the planar guided photon. For bare exciton
mass between 0.1me and 0.01me �the typical values for semi-
conductors�, the depth does not change very much. Even if
the exciton effective mass is chosen artificially small, the
dispersion is still about 5 meV. This insensitivity arises from
the separation of length scales between the electronic lattice
constant and the photonic crystal lattice constant. The rel-
evant photonic Bloch modes are dominated by Fourier com-
ponents of wave vector much smaller than the typical wave
vectors for bare exciton motion. The change in bare exciton
energy on the scale of the photon wave vector is very small,
and the exciton remains in resonance with the photonic band
edge over this range of energies. This justifies our neglect of
exciton dispersion in the simplified models �Eqs. �6� and
�18�� for the case of exciton in close resonance with the
photonic band edge.

The magnitude of the dressed exciton local minimum as a
function of the detuning ��b−��2D� between the bare exci-
ton binding energy and the 2D photonic band-edge frequency
is shown in Fig. 5. The maximum amplitude is about
8.2 meV at zero detuning. This suggests that the exciton cap-
ture by this 2D band edge could survive thermal fluctuations
of roughly 80 K. This depth decreases with increasing detun-
ing. Figure 6 shows the effective mass of the lower exciton-
polariton captured near the photonic band edge as a function
of the detuning. Clearly, the effective mass remains about 4
orders of magnitude less than the electron mass over a sig-
nificant range of detuning of the bare exciton from the 2D
band edge. The resulting dressed exciton exhibits very high
mobility. On resonance, the dressed exciton effective mass is
about half of that of the planar guided photon, in agreement
with the analytical result obtained from Eq. �15b�. In Fig. 6,
we assume that the coupling constants in Eq. �10e� are inde-
pendent of the quasi-wave-vector q� , since we focus on the
region near the band-edge wave vector.
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FIG. 3. Renormalized exciton dispersion for the model of a
dispersionless bare exciton �infinite effective mass� resonantly in-
teracting with the 2D planar guided photonic band in woodpile QW
heterostructure. The solid line shows the dispersion of the lower
dressed exciton-polariton state. For comparison, the dashed line
shows the original exciton dispersion with effective mass of 0.1me.
The ground state shifts from  �q� =0� to the 2D planar guided band
edge at X. Here, a is the photonic crystal lattice constant, and the y
axis shows the shifted energy relative to the bare exciton recombi-
nation energy.
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FIG. 4. Dressed exciton energy shift for the model of exciton
resonantly interacting with 2D planar guided photonic band of
woodpile QW heterostructure. The solid line shows shifted energy
�relative to the bare exciton recombination energy� of the local
minimum in the dressed exciton-polariton dispersion as a function
of the bare exciton effective mass. The typical values for bare ex-
citon effective mass in semiconductor are between 1me and 0.01me

�me is the electron mass�. In this range, the bare exciton dynamics
has negligible influence on the dressed exciton ground state.
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We now consider the realistic dispersion of the planar
guided photon in the first Brillouin zone �instead of band-
edge effective-mass approximation� to obtain the quantitative
dispersion relation of the lower dressed exciton. In order to
perform the numerical calculation, we create a grid of dis-
crete points in the first Brillouin, each point on the mesh
representing a different wave vector q� . In principle, we can
calculate the electric field distribution and 2D guided mode
frequency for each q� by FDTD method. Given the field dis-
tribution, we can construct the Hamiltonian matrix �Eq. �12��
and diagonalize the matrix to obtain the lower dressed exci-
ton energy at each wave vector q� in the first Brillouin zone.
In practice, we approximate the electric field distribution for
all q� as being that of the band-edge field distribution. Then,
only the detuning between the exciton recombination energy
and the 2D photon band-edge frequency �1 appears explic-
itly in the matrix �Eq. �12��. Using this approximate descrip-
tion, the dispersion of the dressed exciton is calculated as
shown in Fig. 7 on resonance �zero detuning�. Figure 8
shows the original dispersion of the 2D guided photon band.
There are four band edges appearing at high symmetry
points, q� = �0.5,0� , �0,0.5� , �−0.5,0� , �0,−0.5�. When the
bare exciton energy nearly coincides with the 2D band-edge
photon, the dressed exciton ground state energy �at high

symmetry band-edge wave vector points� is considerably
lower than the bare exciton ground state energy at q� = �0,0�.
As shown in Eq. �11�, this dressed exciton of wave vector q�
is a linear superposition of excitons with wave vectors q�
+G�

n and the 2D guided photon with wave vector q� .
From the modified infinite effective-mass exciton creation

operator �Eq. �17��, we observe that the envelope of the ex-
citon component of the dressed ground state mirrors the elec-
tric field of the corresponding photonic band edge. In our
current exciton-2D planar photon interaction model, only the
T exciton is considered. In this case, the amplitude of electric
field perpendicular to the wave vector q� closely resembles
the exciton envelope wave function. This is depicted in Fig.
9�a�, where the square of the electric field amplitude can be
interpreted as the exciton probability density in one unit cell
on the QW plane. The relative direction between two arrows
at two different points shows the relative phase of the electric
field of those two points. Figure 9�a� exhibits a nodal �zero
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FIG. 5. For the model of dispersionless exciton interacting with
2D planar band edge in woodpile QW heterostructure, solid line
shows the magnitude of the dressed exciton local minimum as a
function of the detuning ��b−��2D� between the bare exciton bind-
ing energy and the 2D photonic band-edge frequency.
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FIG. 6. For the model of dispersionless exciton interacting with
2D planar guided band edge in woodpile QW heterostructure, the
solid line shows the effective mass �in units of 10−4me� of the lower
exciton-polariton along the x direction captured at q� = �0.5,0� 2�
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FIG. 7. �Color online� For the model of dispersionless exciton
resonantly interacting with the 2D planar guided band in woodpile
QW heterostructure, the shaded surface shows the dispersion �en-
ergy vs wave vector q� of the dressed exciton-polariton in the first
Brillouin zone. The dressed exciton ground state appears at high
symmetry photonic band-edge wave vector points q�
= �0.5,0� , �0,0.5� , �−0.5,0� , �0,−0.5� in units of 2�
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FIG. 8. �Color online� The photonic dispersion surface �energy
vs wave vector q� of the 2D planar guided band in woodpile QW
heterostructure in the first Brillouin zone. There are four minimum
frequency band edges at q� = �0.5,0� , �0,0.5� , �−0.5,0� , �0,−0.5� in
units of 2�
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amplitude� line, suggesting a standing mode electric field
distribution on the QW. For realistic bare exciton dispersion,
the exciton probability distribution is smoother than that
shown in Fig. 9�a�. If T and L excitons are both included in
our model Hamiltonian �Eq. �10��, the local minimum in the
dressed exciton dispersion is slightly �about 10%� deeper
than before.

B. Exciton capture by 3D photonic band edges

In this section, we generalize the variational method used
in Sec. III A to solve the Hamiltonian �Eqs. �5��. This pro-
vides a more general eigenvalue equation describing an ex-
citon interacting with more than one photonic band edge.

From the interaction Hamiltonian �Eq. �5d��, we observe
that excitons with different wave vectors q� +G�

n are indirectly
coupled through the process of emitting and reabsorbing vir-
tual Bloch mode photons with band label p and wave vector
�q ,kz�, where kz can be freely chosen. Now, the dressed ex-
citon eigenstate is a more complicated linear superposition of
bare exciton states and photonic Bloch modes. This can
again be expressed as a variational wave function in the
Schrödinger picture:


q��dressed
exc = �

j,n
bj,n

exc
j,q� + G�
n�bare

exc + �
p,kz

bp,�q� ,kz�
photon 
p,�q� ,kz��photon.

�19a�

Here, 
j ,q� +G�
n�bare

exc represents a single bare j��T,L,Z� ex-
citon of wave vector q� +G�

n and zero photons. 
p , �q� ,kz��photon

represents a single 3D photon in band p with wave vector
�q� ,kz� and no exciton. bj,n and bp,�q� ,kz�

photon are variational ampli-
tudes of bare exciton eigenstates and the 3D photons, respec-
tively. This variational ansatz for the dressed exciton at wave
vector q� , denoted by 
q��dressed

exc , considers only contributions
from the single exciton and single-photon sectors of the
many-electron, multiphoton Hilbert space and E is the corre-
sponding eigenenergy.

The corresponding Schrödinger equation is

H
q��dressed
exc = E
q��dressed

exc . �19b�

Projecting Eq. �19b� into the space spanned by the states

j ,q� +G�

n�bare
exc and 
p , �q� ,kz��photon, we obtain the following

equations:

� j,q�+G�
nbj,n

exc + i��
p,kz

gj,n,pbp,�q� ,kz�
photon = Ebj,n

exc, �20a�

��p,�q� ,kz�
bp,�q� ,kz�

photon − i��
j,n

gj,n,p
* bj,n

exc = Ebp,�q� ,kz�
photon . �20b�

From Eqs. �20a� and �20b�, we obtain

bj,n
exc =

i��
p

gj,n,pAp

E − � j,q�+G�
n

, �21a�

bp,�q� ,kz�
photon =

− i��
j,n

gj,n,p
* bj,n

exc

E − ��p,�q� ,kz�
, �21b�

where

Ap � �
kz

bp,�q� ,kz�
photon . �21c�

Substituting Eq. �21a� into Eq. �21b� and performing the sum
over kz on both sides of Eq. �21b�, we obtain the condition

Ap = �
j,n,kz

− i�gj,n,p
* �i��

p�

gj,n,p�Ap��
�E − ��p,�q� ,kz�

��E − � j,q�+G�
n�

. �22�

In order to evaluate the energy eigenvalue E, it is useful to
rewrite this as

(a) (b) (c)

FIG. 9. �a� For the model of a dispersionless exciton resonantly interacting with 2D planar guided band edge in woodpile QW
heterostructure, the shading depicts the intensity distribution of the y component of the planar guided electric field �
Ey�x ,y ,zo�
2� on the QW
plane at position zo. The deep dark region indicates the maximum intensity and the light gray region shows the minimum intensity. The loops
circled by dashed lines indicate the woodpile rods above and below the QW. For comparison, we show the electric field intensity distribution
at the same QW position for the 3D upper band edge at q= �0.5,0 ,0.417� 2�

a in �b� and 3D lower band edge at q= �0.3,0 ,0� 2�
a in �c�.
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�
j,n,kz

� �2gj,n,p
* gj,n,p

�E − ��p,�q� ,kz�
��E − � j,q�+G�

n�
− 1�Ap

+ �
p��p,j,n,kz

�2gj,n,p
* gj,n,p�

�E − ��p,�q� ,kz�
��E − � j,q�+G�

n�
Ap� = 0

�23�

Equation �23� consists of p equations, one for each pho-
tonic band. A nontrivial solution of this set of homogeneous,
linear equations exists provided that the determinant of the
corresponding matrix of coefficients is zero. This yields the
required eigenvalue equation. While Eq. �23� is a very gen-
eral equation for an exciton interacting with multiple photo-
nic bands �different p�, it is often the case that one photonic
band edge interacts dominantly when the exciton recombina-
tion energy is in near resonance with that band edge. In this
case, the dominant features of the eigenvalue spectrum �E vs
q�� can be reproduced by eliminating all other photonic
bands.

Many PBG architectures exhibit nondegenerate photonic
band edges as evident from band structure calculation. Some
PBG materials �like woodpile� exhibit degeneracy at certain
band-edge wave vectors in the infinite crystal idealization.
Finite sample size and sample boundary conditions may lift
such degeneracy. If the exciton is in near resonance with one
photonic band edge, we can typically neglect further re-
moved photonic band edges, since the dressed exciton en-
ergy shift decreases with detuning as shown in Figs. 5 and
12.

In typical PBG materials, different photonic band edges
have different field polarization contents and intensity
maxima at different positions. This is also true for the
PBG-QW heterostructure. We consider two upper band
Bloch modes at the wave vector �0.5,0 ,0.26� 2�

a to illustrate
this point. We refer to the 3D upper band-edge mode as band
1, and next higher band as band 2. Detailed electric field
distribution calculations �using FDTD� show that these two
photonic bands exhibit quite different polarization contents.
Band 1 has a relatively strong electric field component in
plane along the y direction, whereas band 2 has a strong
electric polarization along the normal z direction. These
mode profiles also vary as the vertical position of the cutting
plane �where the QW layer is inserted within the 3D PBG
material� is changed. This implies that the exciton-photon
coupling varies with the vertical placement of the insertion
plane. In order to track this variation, we plot the in-plane
electric field integral over the QW plane in one unit cell

��QW plane in one unit cell�
E� x
2+ 
E� y
2�dxdy� as a function of QW
insertion position in the z direction for the two bands in Fig.
10. The dashed line corresponds to band 1 and dotted line
corresponds to band 2. The solid line gives the overlap inte-
gral of the two in-plane, band-edge electric fields between
these two photonic bands. Clearly, the dashed line is much
higher than the dotted line and the dashed line is peaked at
certain insertion positions. This is indicative of the fact that
the in-plane polarization content �relevant to exciton-photon
coupling� is larger for band 1 than for band 2. We give the
in-plane electric field distribution at the optimal insertion

plane in Fig. 11. In Fig. 11, the shading indicates the in-plane
electric field intensity and the arrows provide a snapshot of
the in-plane electric field amplitude. The relative arrow di-
rections at different positions represent the relative phase of
the in-plane electric field vector. The in-plane electric field is
confined to certain spatial positions and specific polariza-
tions. This leads to a small overlap �solid line in Fig. 10�
between different photonic bands. More fundamentally, the
small overlap between different modes comes from the or-
thogonality of the different vector fields �including full po-
larization content�. By suitable choice of the QW insertion

FIG. 10. For the model of a dispersionless exciton resonantly
interacting with 3D upper band edge in DSS:1 QW heterostructure,
the in-plane electric field integral over the QW plane in one unit cell

��QW plane in one unit cell�
E� x
2+ 
E� y
2�dxdy� is depicted as a function
of QW insertion position in the z direction for band 1 �dashed line�
and band 2 �dotted line�. The solid line gives the overlap integral of
the two in-plane, band-edge electric fields between these two pho-
tonic bands.
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FIG. 11. For the model of a dispersionless exciton resonantly
interacting with the 3D upper band edge in DSS:1 QW heterostruc-
ture, the shading depicts in-plane electric field intensity distribution
at the optical insertion plane 0.2a. Arrows provide a snapshot of the
in-plane electric field amplitude. The relative arrow directions at
different positions represent the relative phase of the in-plane elec-
tric field vector. The in-plane electric field is confined to certain
spatial positions �strongest at the deep dark region� with some spe-
cific polarizations. The loop circled by dashed lines indicate the
dielectric distribution around the QW.
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plane, we can enhance the exciton-photon interaction for a
specific photonic band edge. If the exciton is captured by this
photonic band edge, the wave-field orthogonality condition
automatically decreases exciton coupling to other nearby
photonic band edges.

The above arguments apply with equal force to the 2D
planar guided band edges. As shown in Figs. 1�b� and 2�b�,
the eigenfrequencies of these modes are far away from the
upper or lower 3D band edges. Our numerical calculation
shows shows that the second planar guided band �closer to
the 3D upper band edge� interacts very weakly with the T
and L excition in contrast to their strong interaction with the
lower planar band edge.

IV. EXCITON CAPTURE IN THE EFFECTIVE-MASS
APPROXIMATION

In this section, we derive simple analytical approxima-
tions for the dressing and capture of excitons by photonic
band edges using the effective-mass approximation for pho-
tons in the PBG-QW heterostructure. The analysis is also
simplified by neglecting the bare kinetic energy of the exci-
ton due to purely electronic hopping motion within the QW.
Our numerical results for exciton interaction with the 2D
planar guided band confirm that the bare exciton dispersion
has a negligible effect on the final dressed exciton dispersion.
Likewise, for the 3D photonic band edges, the dressed exci-
ton dispersion is dominated by radiative corrections. Instruc-
tive analytical results are obtained by considering a disper-
sionless �� j,q�+G�

n =�b� bare exciton interacting with only one
3D photonic band edge. In what follows, we also assume that
the different polarization states of the exciton �indexed by j�
lead to the same electron-hole recombination energy �b. In
this case, only the first term in Eq. �23� needs to be retained.
We also suppress the photonic band index p. The resulting
eigenvalue equation,

�
j,n,kz

�2gj,n
* gj,n

�E − ��q� ,kz
��E − �b�

= 1, �24�

is essentially the same as Eq. �9�, which we suggested as a
variational solution to the simplified model Hamiltonian �Eq.
�6�� obtained by the canonical transformation method.

Since we neglect the dependence of uj,n �the j component
of the nth Fourier component the electric field vector�, on the
wave vector �q� ,kz�, we can separate the sum over kz and the
sum over �j ,n� in Eq. �24�. The eigenvalue Eq. �24� then
becomes

�2g̃2J

E − �b
= 1, �25a�

where

J = �
kz

1

E − ��q� ,kz

�25b�

and g̃ is precisely the effective exciton-photon coupling de-
fined in the Eq. �6d�.

Changing the sum into integral and substituting the band-
edge effective-mass dispersion �Eq. �1��, we obtain

J =
l

2�
� dkz�E − ���q�

�i� +
ac

2�
Az

�i��kz − ki�2��−1

,

�26a�

where

�q�
�i� = �i +

ac

2�
�Ax

�i��qx − q�x
�i��2 + Ay

�i��qy − q�y
�i��2� . �26b�

Here, i=2 corresponds to the upper 3D band edge and i=3
corresponds to the lower 3D band edge.

A. Exciton resonance with upper 3D photonic band edge

For the exciton in near resonance with 3D upper band
edge, we choose i=2 in Eq. �26�. After performing integra-
tion, Eq. �26a� becomes

J = − � l

2
�����q�

�2� − E�
ac

2�
Az

�2��−1/2

. �27�

On the condition of near resonance, i.e., �b���q�
�2�, it is con-

venient to define the complex variable z=E−�b. The eigen-
value equation then becomes

z = − �zo
�2��3/2�− z�−1/2, �28�

where zo=�l�2g̃2 /�2� ac
2�Az

�2��1/2�	2/3 has the units of energy.
The eigenvalue equation �Eq. �28�� has two physical solu-
tions. z1=−zo

�2� corresponds to a stable exciton-photon bound
state in the PBG and represents the new ground state of the
dressed exciton. z2=e−i�/3zo

�2� is a complex solution that de-
scribes a decaying exciton state outside the PBG.

From the solution z1, we see that the upper band-edge
plays a similar role to the planar guided mode band-edge
photon. The interaction of the exciton with band-edge pho-
tons creates a local minimum in the dispersion of renormal-
ized exciton. The following results are shown for the model
of dispersionless exciton interacting 3D upper band edge
�Ax

�2�=0.7, Ay
�2�=0.1, and Az

�2�=0.7� in DSS:1 QW hetero-
structure. Figure 12 shows the depth of the dispersion mini-
mum as a function of the detuning between the upper band
edge and the bare exciton. For the upper 3D band edge, the
depth of the dispersion minimum at the band-edge wave vec-
tor is about 3 meV on resonance. This depth decreases as the
detuning increases. Once the exciton falls into this momen-
tum state of minimum energy, it becomes a more stable and
mobile entity. The dressed exciton effective mass is shown in
Fig. 13 as a function of the detuning of the electron-hole
recombination energy from the photonic band edge. This ef-
fective mass is roughly 4 orders of magnitude smaller than in
the absence of the PBG environment and can reach five or-
ders less in magnitude when near resonance. The dispersion
of the 3D upper band edge in the first Brillouin zone is
similar to that of the 2D guided photonic band shown in Fig.
8. If we insert the QW at a height of position 0.2a from the
bottom of the unit cell, the electric field intensity shown in
Fig. 11 closely corresponds to the exciton probability distri-
bution.
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B. Exciton resonance with lower 3D photonic band edge

For the exciton in resonance with 3D lower photonic band
edge, we choose i=3 in Eqs. �26�. After performing the in-
tegration, we obtain the same result as in Eq. �27� except
with the superscript �2� replaced by �3� throughout. On the
condition of near resonance, i.e., �b���q�

�3�, we substitute the
new value of J into the eigenvalue equation �Eq. �25a�� to
obtain

z = �zo
�3��3/2z−1/2, �29�

where zo
�3�=�l�2g̃2 /�2�− ac

2�Az
�3��1/2�	2/3. As in the case of the

upper 3D photonic band edge, there are two physical solu-
tions. z1=zo

�3� corresponds to an exciton-photon bound state
in the PBG. z2=e−i2�/3zo

�3� is a complex solution that de-
scribes a decaying exciton state outside of the PBG.

From the solution z1, it is apparent that the lower band-
edge interaction serves to increase the exciton recombination
energy. This is a consequence of the negative photon effec-
tive mass along the z direction. As a result, if we set the
exciton in resonance with the negative effective-mass band
edge, it is not possible to capture the exciton at the wave
vector of this band edge. Figure 14 shows the exact lower
band-edge dispersion in the first Brillouin zone. At wave
vector positions corresponding to peak values �dark red re-
gion� of the lower band-edge mode, the photon in-plane ef-
fective mass is negative. However, at wave vectors q�
= �0,0� , �0.5,0� , �−0.5,0� , �0,0.5� , �0,−0.5�, the photon ef-
fective mass is positive. Figure 15 shows the renormalized
exciton dispersion in the first Brillouin zone when the bare
exciton recombination energy is in resonance with the maxi-
mum lower band-edge frequency �to obtain this, we take
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FIG. 12. For the model of a dispersionless exciton interacting
with 3D upper band edge in DSS:1 QW heterostructure, solid line
shows the magnitude of the dressed exciton local minimum as a
function of the detuning below the 3D upper band-edge frequency.
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FIG. 13. For the model of dispersionless exciton interacting
with 3D upper band edge in DSS:1 QW heterostructure, the solid
line shows the renormalized effective mass �in units of 10−4me� of
the dressed exciton along the x direction captured at �kx ,ky�
= �0.5,0� 2�

a as a function of the detuning below the 3D planar band
edge.
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FIG. 14. �Color online� The photonic dispersion surface �energy
vs wave vector q� of the 3D lower band in DSS:1 QW heterostruc-
ture in the first Brillouin zone. The dark ridges �dark red� corre-
spond to the maximum value of the lower band-edge mode. Along
these ridges, the photon in-plane effective mass is negative. How-
ever, at wave vectors q� = �0,0� , �0.5,0� , �−0.5,0� , �0,0.5� , �0,−0.5�
in units of 2�

a , the photon effective mass is positive.
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FIG. 15. �Color online� For the model of dispersionless exciton
resonantly interacting with 3D lower band edge in DSS:1 QW het-
erostructure, the shading shows the dispersion �energy vs wave vec-
tor q� of the renormalized dressed exciton-polariton in the first Bril-
louin zone. An exciton can be captured with a strongly
renormalized small positive effective mass at q� = �0,0� , �0.5,0� ,
�−0.5,0� , �0,0.5�,�0,−0.5� in units of 2�

a .
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Az
�3�=0.34�. Comparing Figs. 14 and 15, we see that the

negative effective-mass ridges in the photon dispersion give
rise to corresponding repulsive positive ridges in the exciton
energy. However, these repulsive ridges lead to a sharp local
minimum at q� =0 in the dressed exciton dispersion. There-
fore, an exciton can be captured with a strongly renormalized
positive effective-mass at q� =0. The exact photonic disper-
sion also exhibits positive effective-mass local minima at q�
= �0.5,0� , �−0.5,0� , �0,0.5� , �0,−0.5�. An exciton interacting
with these positive effective-mass modes will be dressed and
captured at these wave vectors. Depending on specific
PBG-QW heterostructure and choice of QW insertion posi-
tion, the global minimum of the exciton dispersion could
occur at either the q� =0 local minimum or q� = �0.5,0�, etc.,
local minima. For an exciton is captured at the wave vector
�0,0�, Fig. 16 shows the renormalized exciton effective mass
as a function of the detuning between the bare exciton re-
combination energy and 3D lower band edge. At q� =0, the
renormalized exciton effective mass is still about 3 orders of
magnitude less than the electron mass.

V. INFLUENCE OF STATIC DISORDER AND PHONONS

Our results on exciton dressing and capture from the pre-
vious section are based on models satisfying the conserva-
tion of the exciton in-plane momentum. Nevertheless, most
of our conclusions are robust to the presence of disorder and
weak random scattering in the sample, provided that this
disorder is not so strong as to seriously modify the electro-
magnetic mode structure in the vicinity of the exciton recom-
bination energy. In real systems, disorder may arise from the
presence of impurities in the QW plane and the roughness at
the QW interface. In the case of a layer of quantum dots,
randomness arises from the size distribution and positioning
of the dots. Each of these forms of disorder breaks the in-
plane translational symmetry. The energy fluctuation is typi-
cally small compared to the exciton binding energy, so the
internal degrees of freedom of the exciton �as a bound

electron-hole state� are not affected by the weak disorder.
The exciton’s center-of-mass �COM� motion, however, expe-
riences a weak static random potential on top of the strong
periodic potential.37 A model Hamiltonian describing the mo-
tion of the exciton COM is given by

H = −
�2�R

2

2M
+ V�R� . �30�

Here, M is the bare exciton effective mass. V�R� is a random
potential acting on the exciton COM. It is assumed to have a
Gaussian autocorrelation with root mean square �rms� ampli-
tude � and correlation length �:

�V�R1�V�R2�� = �2e−
R1 − R2
2/�2
. �31�

It is straightforward to show that the rms scattering matrix
element �
VK� ,K� �


2� for the transition from an exciton state 
K�
to another state 
K�� is proportional to Fourier transform the

correlation function �Eq. �31�� evaluated at P� =K� −K� �. In
d-spatial dimensions,

�
VK� ,K� 
2� � �2�de−�2P2/4. �32�

If the dressed exciton effective mass becomes s2M, in which
s is a scaling factor, the exciton dynamics is governed by the

new effective Hamiltonian H�=−
�2�R

2

2s2M
+V�R�=−

�2�R�
2

2M
+V��R��, where R��sR and V��R��=V�R� /s�. Using the dis-
order autocorrelation function �Eq. �31��, we obtain

�V��R1��V��R2��� = �2e−
R1� − R2�
2/�s��2
. �33�

Clearly, the disorder induced scattering of the dressed ex-
citon is the same as that of the bare exciton except with
disorder correlation length of s� rather than �. For typical
disorder on the scale of nanometers and P on the scale of a
photon wave vector, ��P�2�1. In the two-dimensional �d
=2� plane of the QW, it follows from Eq. �32� that the rms
scattering matrix elements for the dressed exciton are modi-
fied by a factor of s2. In other words, as the exciton effective
mass becomes smaller, the rms scattering amplitude due to
short-range-correlated disorder becomes proportionately
smaller. Equivalently, the high mobility of the dressed exci-
ton causes significant spatial averaging over the disorder po-
tential, thereby reducing any deleterious effects of random
scattering. This type of motional narrowing of the exciton
spectral line has been extensively studied37–41 in other con-
texts. The captured exciton in the PBG-QW heterostructure
has a typical effective-mass reduction of 10−4. Due to the
motional narrowing effect, this highly mobile dressed exci-
ton is robust to the effects of static disorder on the electronic
scale. The dressed exciton dispersion may, nevertheless, be
influenced by larger scale disorder that alters the overall pho-
tonic band structure or closes the PBG. In order to avoid this
possibility, the PBG cladding regions should be fabricated to
a resolution of at least 50 nm.

The robustness of the dressed exciton to nonradiative
scattering and decay effects is also an important issue for
experimental observation of the effects we predict. While a
typical PBG of heterostructures with gap centered at 1.5 �m
is about 100 meV, the longitudinal optical �LO� phonon en-
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FIG. 16. For the model of dispersionless exciton interacting
with 3D lower band edge in DSS:1 QW heterostructure, the solid
line shows the effective mass �in units of 10−3me� of the renormal-
ized exciton captured by 3D lower band around the  wave vector
position as a function of the detuning above the 3D lower edge.
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ergy can be roughly 30–40 meV in III-V semiconductors.42

In this situation, at low temperature �thermal energy below
the LO phonon energy�, the exciton can decay by simulta-
neous emission of a lower frequency photon �below the
PBG� and one or more LO phonons. Starting from Fröhlich
model of electron-LO phonon interaction,43 the matrix ele-
ment describing the exciton �composed of a conduction band
electron and a valence hole� scattering through emission or
absorption of a LO phonon with wave vector q� and kz is the
following:

Vq,kz
� �
k�1,�1


ei�q� ·re
� +kzze� − ei�q� ·rh

� +kzzh�

k�2,�2
�/�q2 + kz

2�1/2.

�34�

This describes the exciton transition from 
k�1,�1
to 
k�2,�2

with wave vector change q� . The wave vectors k�1,2 character-
ize the exciton COM motion and � characterizes the exciton
internal degrees of freedom. r�e and r�h are electron and hole
coordinates. Defining �e=me

* / �me
*+mh

*� and �h=mh
* / �me

*

+mh
*�, we transform to the COM coordinate R� and the rela-

tive electron-hole separation coordinate r�. In this case, r�e

=R� +�hr� and r�h=R� −�er�. Performing the integral over R� , we

obtain the in-plane momentum conservation k1
� =k2

� +q� . As-
suming that the electron and hole wave functions along the
normal direction are given by the ground state of a particle in
1D box �see Eq. �4b� with m=1�, we can perform the integral
over ze and zh to obtain a form factor F�kz���dz
f �c,v�
��z�
2eikzz describing QW confinement of the charge carriers.
Equation �34� then becomes

Vq,kz
� �k�1,k�2+q�F�kz����1


ei�hq� ·r� − e−i�eq� ·r�
��2
�/�q2 + kz

2�1/2.

�35�

Here, � is wave function of electron and hole relative coor-
dinates. Before we perform the integral over r�, we first quali-
tatively analyze the nature of this matrix element for small q.
For this purpose, we perform a Taylor expansion of the ex-
ponentials and keep up to the second order terms. This yields

ei�hq� ·r�−e−i�eq� ·r�� iq� ·r�−
mh

*−me
*

mh
*+me

* �q� ·r��2 /2. Here, the zeroth order
is canceled out because of opposite charge of electron and
hole. If the parity of relative electron and hole movement is
changed by LO scattering, the leading term �first order� is
iq� ·r�. Otherwise, the leading term will be the second order

term −
mh

*−me
*

mh
*+me

* �q� ·r��2 /2. Assuming that the exciton internal de-
grees of freedom are not changed by the LO phonon scatter-
ing �exciton remains in the lowest 1s state�, for small q, we
qualitatively have

Vq,kz
�

q2


q
2 + kz
2

. �36�

Using the explicit exciton 1s wave function �given by Eq.
�3c��, we can perform the integral over r� to obtain

Vq,kz
� �k�1,k�2+q�F�kz��Gh�q� − Ge�− q��/�q2 + kz

2�1/2, �37�

where Ge,h�q�=�� �e,hqaB

4
�2

+1�−3/2
. This is in agreement with

Eq. �36� for small q.

The decay of the dressed exciton by emission of a single
photon and a single LO phonon is severely limited by the
requirements of energy and momentum conservation. In the
dressed state, the exciton wave vector is that of a band-edge
photon. Since the emitted photon also has a small wave vec-
tor, it follows that emitted phonon must have wavelength
comparable to that of the emitted light. However, from the
coupling constant �Eq. �37��, we have shown that Vq,kz

�
q2


q
2+kz
2 for q�

1
aB

. Therefore, the transition matrix element

for single-phonon-assisted decay of the dressed exciton cap-
tured by a photonic band edge is very small. By way of
contrast, the bare �untrapped� exciton can propagate over a
broad range of initial wave vectors. In this case, LO-phonon-
assisted decay �with a broad range of phonon wave vectors�
is much more probable. For the dressed exciton, on the other
hand �trapped by a photonic band edge�, phonon-assisted de-
cay requires two or more LO phonons to simultaneously sat-
isfy momentum conservation and occur with stronger cou-
pling.

If we consider LO phonon processes that change the ex-
citon internal degree of freedom, we have to consider higher
order perturbation theory involving more intermediate states.
Theoretical evaluation of the multiphonon processes is com-
plicated because of multiple summation over intermediate
states such as the exciton internal states and LO phonon
states. However, even in the strongly ionic semiconductors,
the Frölich exciton-phonon polar interaction turns out to be a
weak interaction and the intensities of the multiphonon lumi-
nescence lines strongly decrease with increasing number of
participating phonons.44,45 Nakajima et al.46 show that the
instantaneous interaction between the exciton and phonons
will more or less be averaged out by rapid translational mo-
tion of the exciton. This leads to the motional narrowing of
the overall width of the exciton absorption spectra and mo-
tional reduction of the phonon sideband intensities. This is
the same mechanism that we described in the case of exciton
scattering by a static random potential. In summary, weak
electron-phonon coupling �due to momentum conservation�
and motional narrowing provide robustness and stability to
the dressed exciton.

VI. CONCLUSION

In this paper, we have demonstrated the possibility of
novel exciton dynamics in a PBG-QW heterostructure, me-
diated by an engineered electromagnetic vacuum. In a PBG,
the exciton cannot decay directly by single-photon radiative
recombination and the exciton is endowed with a long life-
time. Nevertheless, strong coupling is possible to slightly
off-resonance band-edge photons. By emitting and reabsorb-
ing the virtual photons near the edge of the PBG, the exciton
dispersion is fundamentally changed. This effect is most dra-
matic when the exciton wave vector and recombination en-
ergy nearly coincide with a photonic band edge. The exciton
becomes strongly dressed and “trapped” by this band-edge
photon. The renormalized dispersion of this dressed exciton
has a significant local energy minimum �1–10 meV� at the
photonic band-edge wave vector. Due to strong dressing by
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the band-edge photon, the exciton’s effective mass is compa-
rable to the photon effective mass �4–5 orders less in mag-
nitude of the bare electron mass�. Once the exciton equili-
brates and falls into this local minimum, the dressed exciton
become highly mobile. This, in turn, makes the exciton im-
mune to the influence of LO phonon and disorder through
“motional narrowing.” The “half light” and “half matter” na-
ture of the dressed exciton decreases its coupling with LO
phonon and disorder.

Our detailed numerical results demonstrate that radiative
hopping through RDDI for a QW exciton in PBG material is
a dominant transport mechanism as the exciton recombina-
tion energy and momentum approach that of a photonic band
edge. The resulting renormalized exciton dispersion relation
is almost independent of the original bare exciton hopping
from conventional charge transport. This implies that our
mechanism for dressed exciton dynamics applies not only to
a QW layer but also to a layer of quantum dots placed within
a 3D PBG material. Our mechanism for the exciton dressed
state relies on coherent emission and reabsorption of virtual
band-edge photons. The coherence of this process is likely to
appear at temperature scales ��100 K� defined by the depth
of the dressed exciton dispersion minima. The drastic de-
crease of the dressed exciton effective mass may facilitate
observation of high temperature many-body coherence ef-
fects, such as Bose-Einstein condensation �BEC� in a finite
2D system �Tc�m−1 �Ref. 47�� or a 2D harmonic trapped
system �Tc�m−1/2 �Ref. 47��. Here, the transition critical
temperature Tc from the normal �incoherent� state to the BEC
strongly depends on the exciton effective mass m. The half
light nature of the dressed exciton also makes the hetero-
structure promising for the development of extremely low
threshold lasers, in which the quantum statistics of the emit-
ted photons mirrors the quantum statistics of the many-body
state of dressed excitons.15
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APPENDIX: EXCITON-PHOTON INTERACTION IN A
PHOTONIC CRYSTAL

In this appendix, we describe the coupling between a QW
exciton and electromagnetic modes in a PBG heterostructure.
Consider the Hamiltonian for N interacting electrons in a
semiconductor:

He = �
i
�−

�2

2m
��i

2 +
1

2�
i�j

e2


r�i − r� j

− �

i,l

Ze2


r�i − R� l

. �A1�

Here, i and l refer to the index of the electron and nuclei,
respectively, and Z indicates the nuclear charge. We consider
a two-band semiconductor model, whose many-electron
ground state takes the form of a Slater determinant:


0 = A��vk�1
,�vk�2

, . . . ,�vk�i
, . . . ,�vk�N

	 . �A2�

Here, A is the antisymmetrizing operator, N is the number of
unit cells, and �vk�i

are one-electron wave functions in the
valence band of the semiconductor. Equation �3a� shows the
exciton state vector in second quantized form. In first quan-
tization, the exciton state with wave vector kex can then be
expanded in the following form:


k�ex
= �

k�
Ak�,k�ex

��c,k�+�1/2�k�ex�,�v,k�−�1/2�k�ex�, �A3a�

��c,k�+�1/2�k�ex�,�v,k�−�1/2�k�ex�

= A��vk�1
,�vk�2

, . . . ,�c,k�+�1/2�k�ex
, . . . ,�vk�N

	 . �A3b�

Here, Ak�,k�ex
, defined by Eq. �3b�, is the Fourier transform of

electron and hole relative wave functions. In Eq. �A3b�, the
valence band one-electron wave function at wave vector k�

− 1
2k�ex has been removed and replaced with a conduction

band one-electron wave function �c,k�+�1/2�k�ex
with wave vec-

tor k� − 1
2k�ex, where k�ex is the exciton center-of-mass wave

vector. The energy difference between an exciton state �Eq.
�A3a�� and ground state �Eq. �A2�� is

�kex
= �b +

�2kex
2

2�me
* + mh

*�
, �A4�

where �b is the binding energy of the exciton. Since we
consider an exciton confined to a QW, kex is the exciton’s 2D
wave vector along the plane. me

* and mh
* are the effective

masses of the electron and hole, respectively.
The interaction Hamiltonian of electrons coupled to an

electromagnetic Bloch wave is given by the expression

Hi =
e

2me
�
i=1

N

�A�̂ �r�i� · p�̂ i + p�̂ i · A�̂ �r�i�� . �A5a�

Here, the quantized vector potential for a single photonic
mode with wave vector kpt is

A�̂ �r�� = ��/2�0�kpt
V�1/2�u��r��eik�pt·r�ckpt

+ u�*�r��e−ik�pt·r�ckpt

† � ,

�A5b�

where the normalized mode function u��r�� is defined in Sec.
II A. c and c† are photon annihilation and creation operators,
respectively.

The coupling constant g for the second quantized exciton-
photon interaction is defined through the transition matrix
element T��
k�ex

,0photon
Hi

0 ,1k�pt

photon�= i�g. The transition

matrix element from 
0 to 
k�ex
, obtained by annihilating a

photon with wave vector k�pt, can be rewritten as
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T = �
k�ex
,0photon


e

2�
i=1

N �A�̂ �r�i� ·
1

i�
�r�i,He� +

1

i�
�r�i,He� · A�̂ �r�i��

�

0,1k�pt

photon� . �A6�

Here, we have used the commutation relationship
p�̂ i

me

= 1
i� �r�i ,He�.
In a spatially homogeneous ���r��=constant� dielectric,

�He ,A�̂ �r�i��=0 upon quantizing the electric field in transverse

plane waves and using the Coulomb gauge �� · ���r��A� �=0.
Then, Eq. �A5a� reduces to a simple form of the minimal
coupling Hamiltonian. However, this is not the case in PBG
materials with strong dielectric variations ���r���constant�.
We may, nevertheless, assume that the electromagnetic field
varies little over the spatial extent of the electronic wave

function, allowing us to set �He ,A�̂ �r�i���0. Using the com-
mutation approximation, Eq. q. �A6� reduces to g
=e�k�ex

�� /2�0�k�pt
V�1/2g̃, where

g̃ = �
k�ex

�
i=1

N

u��r�i�eik�pt·r�i · r�i

0� . �A7�

Substituting Eq. �A3a� into Eq. �A7� and then evaluating the
matrix element of the sum of one-particle operators between
determinantal states yield

g̃ = �
k�

Ak�,k�ex
��c,k�+�1/2�k�ex


u��r��eik�pt·r� · r�
�v,k�−�1/2�k�ex
� �A8�

Substituting the one-electron wave functions given by Eqs.
�4a� and �4b� for the case m=1 into Eq. �A8�, we obtain

g̃ = �
k�

Ak�,k�ex� h�	,z�d	dz . �A9�

Here,

h�	,z� = fc
*�z�u,c

* �r��ei�k�pt�−kex
� �·	�+ikzz�er� · u��r���u,v�r��fv�z�/S

and the integration is over the volume of the quantum well
layer. Performing the integral over the rapidly varying �elec-
tronic� coordinates in u,c

* �r�� and u,v�r��, we have

g̃ = �
k�

Ak�,k�ex
d� ·� h�1�	,z�d	dz . �A10�

Here, d� = �uc�r��
er�
uv�r��� is the exciton dipole moment and

h�1�	 ,z�= fc
*�z�ei�k�pt�−kex

� �·	�+ikzzu��r��fv�z� /S, where S is the quan-

tum well area. Using Eq. �4b� for the case of m=1, we note
that �fc

*�z�fv�z�dz=1. Since the exciton is confined in the
QW, we assume the QW position is at zo to obtain

g̃ = eikzzo �
k�,G�

n

Ak�,k�ex
�kex,kpt�+G�

nd� · u�G�
n. �A11�

Here, we have used Eq. �2� to obtain �n�kex,kpt�+G�
nu�G�

n

=S−1�ei�k�pt�−kex
� �·	�u��	 ,zo�d	, where S is the QW area. From

Eq. �3b�, we find �k�Ak�,k�ex
=��0�S1/2, where ��0� is the am-

plitude for the electron and hole coordinates to coincide. We
finally obtain

g = e�k�ex
��/2�0�k�pt

l�1/2eikzzo��0��
G�

n

�k�pt�,k
�

ex+G�
nd� · u�G�

n,

�A12�

where l is the length �in the z direction� of the quantization
box �containing the PBG QW heterostructure�. From Eq.
�A12�, we obtain the interaction Hamiltonian in second
quantized form:

Hi = �
k�ex,k�pt

i��gBk�ex

† ck�pt
− g*Bk�ex

ck�pt

† � , �A13�

where Bk�ex

† creates a 1s exciton with COM wave vector k�ex.

From Eq. �A12�, we see that the exciton and photon quasi-
wave-vectors in the plane �k�ex and k�pt�

� are conserved modulo
of a reciprocal lattice vector G�

n. We can redefine q� �k�ex

�k�pt�
. Depending on the exciton wave vector direction, we

can decompose the exciton dipole matrix element d�

= �uc�r��
er�
uv�r��� into three orthogonal directions. If the di-
pole polarization is in the QW plane and perpendicular to the
exciton wave vector, this exciton is called a T exciton. If the
dipole polarization is in the QW plane and parallel to the
exciton wave vector, it is called an L exciton. If the dipole is
polarized along the normal z direction, it is called a Z exci-
ton. Likewise, the electromagnetic field pattern can be de-
composed into corresponding directions as well. By denoting
j��T,L,Z�, considering many photonic bands characterized
by band index p and assuming zo=0, the interaction Hamil-
tonian can be written as

Hi = �
j,n,p,kz

i�gj,n,pBj,q�+G�
n

† cp,�q,kz�
+ H.c., �A14a�

gj,n,p = −
� j,q�+G�

n

�2��p,�q� ,kz�
�0l

��0�djuj,n,p. �A14b�
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